今天凡太百科給各位分享高中數(shù)學知識點總結及公式大全的知識,其中也會對高中數(shù)學公式總結大全電子版進行解釋,如果能碰巧解決你現(xiàn)在面臨的問題,別忘了關注本站,現(xiàn)在開始吧!

數(shù)學老師精心整理43條高中數(shù)學公式及知識點,高一到高三都能用!
1 函數(shù)的單調(diào)性
2 函數(shù)的奇偶性
3 函數(shù)在某處的導數(shù)的幾何意義
4 幾種常見函數(shù)的導數(shù)
5 導數(shù)的運算法則
6 求函數(shù)的極值
7 分數(shù)指數(shù)冪
8 根式的性質(zhì)
9 有理數(shù)指數(shù)冪的運算性質(zhì)
10 對數(shù)公式
11 常見的函數(shù)圖像
12 同角三角函數(shù)的基本關系式
13 正弦、余弦的誘導公式
14 和角與差角公式
15 二倍角公式
16 三角函數(shù)的周期
17 正弦定理
18 余弦定理
19面積定理
20三角形內(nèi)角和定理
21a與b的數(shù)量積
22平面向量的坐標運算
23兩向量的夾角公式
24平面兩點間距離公式
25向量的平行與垂直
26數(shù)列通項公式與前n項和的關系
27等差數(shù)列通項公事與前n項和公式
28等差數(shù)列的性質(zhì)
29等比數(shù)列的通項公式與前n項和公式
30等比數(shù)列的性質(zhì)
31常用不等式
32直線的三角方程
33兩條直線的垂直和平行
34點到直線的距離
35圓的兩種方程
36點與圓的位置關系
37直線與圓的位置關系
38橢圓、雙曲線、拋物線的性質(zhì)
39雙曲線方程與漸近線方程的關系
40拋物線的焦半徑公式
41平方差標準差的計算
42回歸直線方程
43獨立性檢驗
44復數(shù)
45參數(shù)方程、極坐標化為直角坐標
高中數(shù)學知識點全總結公式是什么?
高中數(shù)學知識點全總結公式:
高中數(shù)學常用公式乘法與因式分。
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)。
高中數(shù)學常用公式三角不等式。
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b。
|a-b|≥|a|-|b|-|a|≤a≤|a|。
一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a。
根與系數(shù)的關系X1+X2=-b/a X1*X2=c/a注:韋達定理。
高中數(shù)學常用公式判別式。
b2-4ac=0注:方程有兩個相等的實根。
b2-4ac0注:方程有兩個不等的實根。
b2-4ac0注:方程沒有實根,有共軛復數(shù)根。
高中數(shù)學常用公式三角函數(shù)公式。
兩角和公式。
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA。
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB。
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。
倍角公式。
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga。
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
半角公式。
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)。
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)。
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))。
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))。
和差化積。
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)。
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)。
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)。
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB。
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB。
高中數(shù)學知識點大全
有的學生認為高中數(shù)學難做難做。其實高中數(shù)學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數(shù)學知識點大全,希望對你們有所幫助!
高中數(shù)學知識點
1、基本初等函數(shù)
指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像
函數(shù)的幾大要素和相關考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關于這三大函數(shù)的運算公式,多記多用,多做一點練習,基本就沒問題。
函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關系,這也是常考點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關系及其相互之間要怎樣轉(zhuǎn)化等問題,需要著重回看課本例題。
2、函數(shù)的應用
這一章主要考是函數(shù)與方程的結合,其實就是函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關系是這一章的重點,要學會在這三者之間靈活轉(zhuǎn)化,以求能最簡單的解決問題。關于證明零點的 方法 ,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數(shù)的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。
4、點、直線、平面之間的位置關系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規(guī)范性問題。
關于這一章的內(nèi)容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質(zhì),同時能用圖形語言、文字語言、數(shù)學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
5、圓與方程
能熟練地把一般式方程轉(zhuǎn)化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數(shù)
考試必在這一塊出題,且題量不小!誘導公式和基本三角函數(shù)圖像的一些性質(zhì),沒有太大難度,只要會畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計算A、B的值和周期,及恒等變化時的圖像及性質(zhì)變化,這部分的知識點內(nèi)容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數(shù)學表達,是計算當中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點坐標公式是重點內(nèi)容,也是難點內(nèi)容,要花心思記憶。
8、三角恒等變換
這一章公式特別多,像差倍半角公式這類內(nèi)容常會出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規(guī)律的,記憶的時候可以集合三角函數(shù)去記。
9、解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
10、數(shù)列
等差、等比數(shù)列的通項公式、前n項及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導就沒問題了。
11、不等式
這一章一般用線性規(guī)劃的形式來考察學生,這種題通常是和實際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實際問題的限制要求來求最值。
高中數(shù)學公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關系 X1+X2=-b/a X1_X2=c/a 注:韋達定理
判別式
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac0 注:方程有兩個不等的實根
b2-4ac0 注:方程沒有實根,有共軛復數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c_h 斜棱柱側(cè)面積 S=c'_h
正棱錐側(cè)面積 S=1/2c_h' 正棱臺側(cè)面積 S=1/2(c+c')h'
圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2
圓柱側(cè)面積 S=c_h=2pi_h 圓錐側(cè)面積 S=1/2_c_l=pi_r_l
弧長公式 l=a_r a是圓心角的弧度數(shù)r 0 扇形面積公式 s=1/2_l_r
錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s_h 圓柱體 V=pi_r2h
高考前數(shù)學知識點 總結
選擇填空題
1、易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數(shù)列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數(shù)問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2、答題方法:
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:直接法、特殊化法、數(shù)形結合法、等價轉(zhuǎn)化法。
解答題
專題一、三角變換與三角函數(shù)的性質(zhì)問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質(zhì)求解。
2、構建答題模板
①化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質(zhì)確定條件。
③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結果。
④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規(guī)范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用余弦定理轉(zhuǎn)化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉(zhuǎn)化的方向。
②定工具:即根據(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關系;二是全部轉(zhuǎn)化為角之間的關系,然后進行恒等變形。
專題三、數(shù)列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數(shù)列的關系式。
②求通項公式。
③求數(shù)列和通式。
2、構建答題模板
①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關系,即找數(shù)列的遞推公式。
②求通項:根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據(jù)數(shù)列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規(guī)范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規(guī)范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,并用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特征點坐標。
③求向量:求直線的方向向量或平面的'法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數(shù)。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數(shù):用一個變量表示目標變量,代入不等關系式。
③得范圍:通過求解含目標變量的不等式,得所求參數(shù)的范圍。
④再回顧:注意目標變量的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果, 經(jīng)驗 證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規(guī)范性。
專題七、離散型隨機變量的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數(shù)學期望。
2、構建答題模板
①定元:根據(jù)已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據(jù)均值、方差公式求解其值。
專題八、函數(shù)的單調(diào)性、極值、最值問題
1、解題路線圖
(1)①先對函數(shù)求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數(shù)求導;②談論導數(shù)的正負性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調(diào)區(qū)間和極值。
2、構建答題模板
①求導數(shù):求f(x)的導數(shù)f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區(qū)間,并列出表格。
④得結論:從表格觀察f(x)的單調(diào)性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規(guī)范性。
以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的“套路”。
高中數(shù)學 學習心得
數(shù)學是一們基礎學科,我們從小就開始接觸到它?,F(xiàn)在我們已經(jīng)步入高中,由于高中數(shù)學對知識的難度、深度、廣度要求更高,有一部分同學由于不適應這種變化,數(shù)學成績總是不如人意。甚至產(chǎn)生這樣的困惑:“我在初中時數(shù)學成績很好,可現(xiàn)在怎么了?”其實,學習是一個不斷接收新知識的過程。正是由于你在進入高中后 學習方法 或 學習態(tài)度 的影響,才會造成學得累死而成績不好的后果。那么,究竟該如何學好高中數(shù)學呢?以下我談談我的高中數(shù)學學習心得。
一、 認清學習的能力狀態(tài)。
1、 心理素質(zhì)。我們在高中學習環(huán)境下取決于我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產(chǎn)生畏懼感,面對失敗時不應灰心喪氣,而要勇于正視自己,及時作出總結教訓,改變學習方法。
2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以后,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙于記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內(nèi)容時,要學會將知識有條理地分為若干類,剖析概念的內(nèi)涵外延,重點難點要突出。不要忙于記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙于套著題型趕作業(yè),對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些“自我感覺良好”的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重于對難題的攻解,好高騖遠,重“量”而輕“質(zhì)”,陷入題海,往往在考試中不是演算錯誤就是中途“卡殼”。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規(guī)范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養(yǎng)成一種依賴于老師解說的心理,做作業(yè)不講究效率,學習效率不高。
二、 努力提高自己的學習能力。
1、 抓要點提高學習效率。(1) 抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學習的根本依據(jù)。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內(nèi)容在教材中的地位,并將前后知識聯(lián)系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對于那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數(shù)學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養(yǎng)出來的。(5) 抓45分鐘課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望于課外去補,則會使學習效率大打折扣。
高中數(shù)學知識點大全相關 文章 :
★ 高二數(shù)學知識點總結
★ 高一數(shù)學必修一知識點匯總
★ 高中數(shù)學學習方法:知識點總結最全版
★ 高中數(shù)學知識點總結
★ 高一數(shù)學知識點總結歸納
★ 高三數(shù)學知識點考點總結大全
★ 高中數(shù)學基礎知識大全
★ 高三數(shù)學知識點梳理匯總
★ 高中數(shù)學必考知識點歸納整理
★ 高一數(shù)學知識點總結期末必備
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
高一到高三數(shù)學公式和知識點有哪些?
一、高中必背88個數(shù)學公式——圓的公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長=2(pi)r
4、圓的標準方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】
5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】
二、高中必背88個數(shù)學公式——橢圓公式
1、橢圓周長公式:l=2πb+4(a-b)
2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率t,但這兩個公式都是通過橢圓周率t推導演變而來。
三、高中必背88個數(shù)學公式——兩角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
四、高中必背88個數(shù)學公式——倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
五、高中必背88個數(shù)學公式——半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
高中數(shù)學知識點全總結公式
高中數(shù)學知識點全總結公式如下:
1、一元二次方程的解:-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a;根與系數(shù)的關系x1+x2=-b/ax1*x2=c/a注:韋達定理;判別式b2-4a=0注:方程有相等的兩實根;b2-4ac0注:方程有兩個不相等的個實根;b2-4ac0注:方程有共軛復數(shù)根。
2、立體圖形及平面圖形的公式:圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標;圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0;拋物線標準方程。y2=2pxy2=-2pxx2=2pyx2=-2py;直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h;正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'。
圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2;圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l;弧長公式l=a*ra是圓心角的弧度數(shù)r0扇形面積公式s=1/2*l*r;錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h;斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長;柱體體積公式V=s*h圓柱體V=pi*r2h。
3、常用的三角函數(shù)公式
(1)兩角和公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA。
(2)倍角公式:tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。









